Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Functions in Noncommuting Variables

Consider the algebra Q〈〈x1, x2, . . .〉〉 of formal power series in countably many noncommuting variables over the rationals. The subalgebra Π(x1, x2, . . .) of symmetric functions in noncommuting variables consists of all elements invariant under permutation of the variables and of bounded degree. We develop a theory of such functions analogous to the ordinary theory of symmetric functions. In p...

متن کامل

The Primitives and Antipode in the Hopf Algebra of Symmetric Functions in Noncommuting Variables

We identify a collection of primitive elements generating the Hopf algebra NCSym of symmetric functions in noncommuting variables and give a combinatorial formula for the antipode.

متن کامل

Partitions, Rooks, and Symmetric Functions in Noncommuting Variables

Let Πn denote the set of all set partitions of {1, 2, . . . , n}. We consider two subsets of Πn, one connected to rook theory and one associated with symmetric functions in noncommuting variables. Let En ⊆ Πn be the subset of all partitions corresponding to an extendable rook (placement) on the upper-triangular board, Tn−1. Given π ∈ Πm and σ ∈ Πn, define their slash product to be π|σ = π∪(σ+m)...

متن کامل

Hopf Algebras, Symmetric Functions and Representations

1.1. Motivation. Much of representation theory can be unified by considering the representation theory of associative algebras. Specifically, the representation theory of Lie algebras may be studied via the representations of universal enveloping algebras; the representation theory of finite groups studied via the representation theory of the group algebra; the representation theory of quivers ...

متن کامل

A Chromatic Symmetric Function in Noncommuting Variables

In [12], Stanley associated with a graph G a symmetric function XG which reduces to G’s chromatic polynomial XG(n) under a certain specialization of variables. He then proved various theorems generalizing results about XG(n), as well as new ones that cannot be interpreted on the level of the chromatic polynomial. Unfortunately, XG does not satisfy a Deletion-Contraction Law which makes it diffi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2012

ISSN: 0001-8708

DOI: 10.1016/j.aim.2011.12.024